Optimization of the Complex-RFM Optimization Algorithm
نویسندگان
چکیده
This paper presents and compares different modifications made to the ComplexRF optimization algorithm with the aim of improving its performance for computationally expensive models with few variables. The modifications reduce the required number of objective function evaluations by creating and using surrogate models of the objective function iteratively during the optimization process. The chosen surrogate model type is a second order response surface. The performance of the modified algorithm is demonstrated for both analytical and engineering problems and compared with the performance of a number of existing algorithms. A meta-optimization of the algorithm is also performed to optimize its performance for arbitrary problems. To emphasize the fact that the modified algorithm uses metamodels it is denoted Complex-RFM.
منابع مشابه
Comparison of Particle Swarm Optimization and Genetic Algorithm in Rational Function Model Optimization
Rational Function Models (RFM) are one of the most considerable approaches for spatial information extraction from satellite images especially where there is no access to the sensor parameters. As there is no physical meaning for the terms of RFM, in the conventional solution all the terms are involved in the computational process which causes over-parameterization errors. Thus in this paper, a...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملEVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS
Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers t...
متن کاملOptimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملEFFICIENCY OF IMPROVED HARMONY SEARCH ALGORITHM FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS
Many optimization techniques have been proposed since the inception of engineering optimization in 1960s. Traditional mathematical modeling-based approaches are incompetent to solve the engineering optimization problems, as these problems have complex system that involves large number of design variables as well as equality or inequality constraints. In order to overcome the various difficultie...
متن کامل